
About Lab 9

In Lab 9 you will implement a Boggle game. The
lab provides the graphical interface; you need to
build the game engine that responds to guesses
from the user.

In Boggle the player (we will make only a 1-player
game) rolls a set of 16 dice containing letters on
each face. These are put into a 4x4 grid. The
player makes words out of this grid by starting
with one of its letters, then adding letters that are
adjacent in the grid.

For example, with grid

A S D M

P T E B

R O F S

I G T N

we can find words

A S D M

P T E B

R O F S

I G T N

past:

A S D M

P T E B

R O F S

I G T N

got:

A S D M

P T E B

R O F S

I G T N

trot:

A S D M

P T E B

R O F S

I G T N

spot:

A S D M

P T E B

R O F S

I G T N

fog:

and plenty of others

There are two different aspects to your work for
this lab. One part is a data structures issue. We
need to be able to tell whether a word is in a list
-- a dictionary list of words, a list of words the
user has already found, a list of words that
actually exist in the grid, and so forth. We will
use a trie for all of these questions.

Remember that each node of a trie represents a
prefix of the words in the tree. Each node has 26
children, which we think of as indexed 'a' to 'z'. To
either find or insert a word into the structure, we
walk along the letters of the word; if the next
letter is 'p' we go to the child of the current node
whose index is p. At the end we have a boolean
flag that says whether or not the string we have
walked along is a word contained in our structures.

So you need to implement class myTrie. Most
of this is very straightforward. One issue you
will need to face is how to convert a single
character into an index in the array. You want
character 'a' to be mapped to 0, 'b' to 1 and so
forth. One way to do this for character ch is to
look at ch-'a'. An alternative way is to define

static String alphabet =
"abcdefghijklmnopqrstuvwxyz";
and look at alphabet.indexOf(ch).

In either case you need to beware of characters
that don't give an index in the range 0..25. Capital
letters, hyphens, apostrophes and other characters
can do this. You don't want your program to crash,
regardless of what input it finds.

Don't be confused by the structure of the class.
myTrie is actually the node class for a trie. There
is a class variable size that holds the number of
words stored at this node or below. The add
method is recursive and returns true if the add
resulted in a new word being added to the trie;
when you come back from a recursive call you
can adjust your node's size variable. An
alternative, though less efficient, method for
implementing the size() method for the trie is to
ignore the class size variable, and instead return
the size of the list representation of the trie.

The myTrie class has a private method that
returns a list containing all of the words stored in
the trie. This is very useful. A simple recursion
builds the list. There is also a method that
returns an iterator for the trie; just make a list
representation and return its iterator.

You should find the myTrie class fairly simple to
implement. The other, and more challenging,
part of the lab is the implementation of the
Boggle class, which is the game engine.

The Boggle class maintains 3 tries:
• lex, which contains all of the words in a

dictionary you read from a file at the start of
the program

• foundWords, which contains all of the words
in the dictionary that can be made from the
current values on the 16 letter dice. After the
dice are rolled you walk around the board
looking for the words to put here.

• guesses, which contains all of the words the
user has found so far

The constructor for the Boggle class does a lot of things:
a) It reads a dictionary file into the trie lex.
b) It calls a method fillDice() that reads a file that

contains the letters that are on the 16 dice (the
dice aren't all the same).

c) It calls a method fillBoardFromDice(). This
shuffles the 16 dice, then randomly chooses one
of the 6 sides of each die to appear on the board.

d) Finally, it calls a method fillFoundWords() that
finds all of the words in the dictionary that can be
built from the current board, and places them in
the foundWords trie. More about this later.

The lab document gives you the main() method to use in
the Boggle class. This method hooks your data
structures up to a graphical front-end that lets a user
play the game. The front-end assumes you have all of
the methods of the Boggle class implemented, so you
won't be able to run it until you have at least a stub for
each of these methods. In fact, it is hard to do any
effective debugging of the Boggle class until you have it
completely written.

Here is an easy way to shuffle an array A. This is
called the "Fisher-Yates Shuffle":

rand = new Random();
n = A.length-1;
while (n > 0) {

m = rand.nextInt(n);
// switch A[m] and A[n]
n = n - 1;

}

There are two algorithmic methods that make
up most of your work on this part of the lab"

• MyTrie search(Square sq, String prefix)
This returns a trie with all of the words on
the board that are in the lex trie and can
be completed from the prefix, starting on
square sq. The fillFoundWords() method
that creates the foundWords trie calls this
16 times (once for each square on the
board) with the empty string as prefix.

• ArrayList<Square> squaresForWord(String
w)
This is called when the user claims that w is
a word on the board. You need to find a
sequence of squares that represent legal
moves and contain the letters of w. This is
used to highlight the squares on the board.

The lab document makes a suggestion for the search method,
which we show on the next slide

The "marking" prevents you from re-using letters you have
already used.

MyTrie search(Square sq, String prefix)
// check to see if we have found a word on the current path
if the current path represents a word in the dictionary

add the word to the wordlist
// continue searching on all possible paths from this square
if there are any words possible from this prefix

(use lex.containsPrefix())
for each unmarked square s adjacent to sq

mark s
recursively search for words starting at square s

using prefix prefix+sq.letter,
add these to wordlist
unmark s

You are more on your own for the squaresForWord() method.
Here is some help:

ArrayList<Square> squaresForWord(String w) calls a
helper method:

ArrayList<Square> squaresForWord(Square sq, String w)

The top level squaresForWord(w) calls the helper method 16
times, once for each square of the board. The first thing the
helper method does is to check whether Square sq contains the
first letter of w; if not, it returns an empty list. If it does, it
recurses on each of its neighbors, using string w.substring(1). You
want to use a marking scheme, just like the search() method, to
prevent reusing squares. If the recursion comes back with a list of
the same length as the substring, you know you have found the list
of squares; just add the current sq to the start of it and return it.

There are two things about this that you might find
tricky. One is the indexing scheme for the board.
The Square class has class variables x and y for the
location of the square on the board. If you think of
an array in the usual notation, board[row][col] is one
entry of the board. The square class has x=row and
y=col, so Square s is s = board[s.x][s.y]. Don't think
of x as the horizontal variable and y as the vertical
one, but rather think of the squares as board[x][y].

If you get this twisted, you will see the wrong
squares on the board highlighted when you correctly
find a word.

The other tricky thing is finding the neighbors
of a given square sq. There are more formal
ways to handle this, but here is some easy
code:

for (int dx = -1; dx <= 1; dx++) {
for (int dy =-1; dy <= 1; dy++) {

if (dx == 0 && dy == 0)
continue;

int newx = sq.x + dx;
int newy =sq.y + dy;
if (newx >= 0 && newx < 4 && newy >= 0 && newy < 4) {

....
}

}
}

There are two error messages you can get from
the game. When you guess a word, the game
first calls squaresForWord() to see if it can find
squares for your word. If your method returns
an empty list of squares, the game says "word
not on board." If you do return an appropriate
list of squares, the game looks for the word in
your trie foundWords. If it is not there, it
replies "word not in lexicon". Note that it does
not look in the dictionary trie lex for the word.
If your search method is incorrect, which
means your foundWords trie will be incorrect,
you might get this message for correct words
that are actually on the board.

